he authentic Japanese sword is made from a specialized Japanese steel called "Tamahagane" which consist of combinations of hard, high carbon steel and tough, low carbon steel. There are benefits and limitations to each type of steel. High-carbon steel is harder and able to hold a sharper edge than low-carbon steel but it is more brittle and may break in combat. Having a small amount of carbon will allow the steel to be more malleable, making it able to absorb impacts without breaking but becoming blunt in the process. The makers of a katana take advantage of the best attributes of both kinds of steel. This is accomplished through a number of methods, most commonly by making a U-shaped piece of high-carbon steel (the outer edge) and placing a billet of low-carbon steel (the core) inside the U, then heating and hammering them into a single piece. Some sword-makers use four different pieces (a core, an edge, and two side pieces), and some even use as many as five.
The block of combined steel is heated and hammered over a period of several days, and then it is folded and hammered to squeeze the impurities out. Generally a katana is folded no more than sixteen times, then it is hammered into a basic sword shape. At this stage it is only slightly curved or may have no curve at all. The gentle curvature of a katana is attained by a process of quenching; the sword maker coats the blade with several layers of a wet clay slurry which is a special concoction unique to each sword maker, but generally composed of clay, water, and sometimes ash, grinding stone powder and/or rust. The edge of the blade is coated with a thinner layer than the sides and spine of the sword, then it is heated and then quenched in water (some sword makers use oil to quench the blade). The clay slurry provides heat insulation so that only the blade's edge will be hardened with quenching and it also causes the blade to curve due to reduced lattice strain along the spine. This process also creates the distinct swerving line down the center of the blade called the hamon which can only be seen after it is polished; each hamon is distinct and serves as a katana forger's signature.
The hardening of steel involves altering the microstructure or crystalline structure of that material through quenching it from a heat above 800 °C (1,472 °F) (bright red glow), ideally no higher than yellow hot. If cooled slowly, the material will break back down into iron and carbon and the molecular structure will return to its previous state. However, if cooled quickly, the steel's molecular structure is permanently altered. The reason for the formation of the curve in a properly hardened Japanese blade is that iron carbide, formed during heating and retained through quenching, has a lesser density than its root materials have separately.
After the blade is forged it is then sent to be polished. The polishing takes between one and three weeks. The polisher uses finer and finer grains of polishing stones until the blade has a mirror finish in a process called glazing. This makes the blade extremely sharp and reduces drag making it easier to cut with. The blade curvature also adds to the cutting power.
English people archers had longbows, West old sheriffs had 06 guns,but Japan's samurai warriors had the most fearsome weapon of all: the razor-sharp, unsurpassed technology of the katana, or samurai sword. In this program, NOVA probes the centuries-old secrets that went into forging what many consider the perfect blade. Fifteen traditional Japanese craftsmen spent nearly six months creating the sword that NOVA follows through production, from smelting the ore to forging the steel to sharpening the blade to a keen edge capable of slicing through a row of warriors at one swoop.